Solution Sheet 1

1. \star i) Answer: $2^{m}-2$.

If a function is not surjective it maps to only one of the points in B. There are two possibilities, so only two of the possible 2^{m} functions from A to B are not surjective.
(ii) Answer: $3^{m}-3 \times 2^{m}+3$.

If $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ then a function from A to B is not surjective only if it is one of the following. It either maps onto $\left\{b_{1}, b_{2}\right\}$, onto $\left\{b_{1}, b_{3}\right\}$, onto $\left\{b_{2}, b_{3}\right\}$, onto $\left\{b_{1}\right\}$, onto $\left\{b_{2}\right\}$ or onto $\left\{b_{3}\right\}$. By part (i) there are $3 \times\left(2^{m}-2\right)+3 \times 1$ such maps out of a possible 3^{m} maps.
2.
(i) $\binom{52}{13}$,
(ii) $\binom{48}{9}$,
(iii) $\binom{39}{13}$,
(iv) $\binom{52}{13}-\binom{39}{13}$.
3. Define

$$
f: \mathcal{P}_{r}(A) \rightarrow \mathcal{P}_{n-r}(A): D \longmapsto D^{c} \quad \forall D \subseteq A .
$$

The function f is its own inverse and is thus a bijection. Hence

$$
\left|\mathcal{P}_{r}(A)\right|=\left|\mathcal{P}_{n-r}(A)\right|, \quad \text { i.e. } \quad\binom{n}{r}=\binom{n}{n-r} .
$$

4. $\bigcup_{r=0}^{n} \mathcal{P}_{r}(A)$ is the collection of all subsets of A, i.e. $\mathcal{P}(A)$.

It is a disjoint union so the cardinality of the union is the sum of the cardinalities. We know that $|\mathcal{P}(A)|=2^{n}$ hence

$$
2^{n}=\left|\bigcup_{r=0}^{n} \mathcal{P}_{r}(A)\right|=\sum_{r=0}^{n}\left|\mathcal{P}_{r}(A)\right|=\sum_{r=0}^{n}\binom{n}{r},
$$

by definition of the binomial symbols.
5. The Binomial Theorem states that for all $x, y \in \mathbb{R}$, we have

$$
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r}
$$

Choose $x=-1$ and $y=1$ to get

$$
0=(-1+1)^{n}=\sum_{r=0}^{n}\binom{n}{r}(-1)^{r}
$$

as required.
Add $\sum_{r=0}^{n}\binom{n}{r}=2^{n}$, from Question 4, and $\sum_{r=0}^{n}(-1)^{r}\binom{n}{r}=0$ to get

$$
2^{n}=\sum_{r=0}^{n}\left(1+(-1)^{r}\right)\binom{n}{r}=\sum_{\substack{r=0 \\ r \text { even }}}^{n} 2\binom{n}{r} .
$$

Subtract to get

$$
2^{n}=\sum_{r=0}^{n}\left(1-(-1)^{r}\right)\binom{n}{r}=\sum_{\substack{r=0 \\ r \text { odd }}}^{n} 2\binom{n}{r} .
$$

6.

$$
\begin{aligned}
(4 x-3 y)^{5}= & (4 x)^{5}+\binom{5}{1}(4 x)^{4}(-3 y)+\binom{5}{2}(4 x)^{3}(-3 y)^{2} \\
& \quad+\binom{5}{3}(4 x)^{2}(-3 y)^{3}+\binom{5}{4}(4 x)(-3 y)^{4}+(-3 y)^{5} \\
= & 1024 x^{5}-3840 x^{4} y+5760 x^{3} y^{2}-4320 x^{2} y^{3}+1620 x y^{4}-243 y^{5}
\end{aligned}
$$

7. i)

$$
\begin{aligned}
\sum_{r=0}^{n} \frac{3^{r} 5^{n-r}}{r!(n-r)!} & =\frac{1}{n!} \sum_{r=0}^{n} 3^{r} 5^{n-r} \frac{n!}{r!(n-r)!}=\frac{1}{n!} \sum_{r=0}^{n} 3^{r} 5^{n-r}\binom{n}{r} \\
& =\frac{1}{n!}(3+5)^{n}=\frac{8^{n}}{n!} .
\end{aligned}
$$

ii)

$$
\begin{aligned}
\sum_{r=0}^{n} 3^{2 r} 5^{n-2 r}\binom{n}{r} & =\frac{1}{5^{n}} \sum_{r=0}^{n} 3^{2 r} 5^{2 n-2 r}\binom{n}{r}=\frac{1}{5^{n}} \sum_{r=0}^{n} 9^{r} 25^{n-r}\binom{n}{r} \\
& =\frac{1}{5^{n}}(9+25)^{n}=\left(\frac{34}{5}\right)^{n} .
\end{aligned}
$$

8. i)

$$
\sum_{r=0}^{4} 4^{r}\binom{4}{r}=(1+4)^{4}=25^{2}, \quad \text { so } x=25
$$

ii)

$$
\sum_{r=0}^{3} 3^{r}\binom{3}{r}=(1+3)^{3}=4^{3}=8^{2}, \quad \text { so } x=8
$$

9. The coefficient of $x^{99} y^{101}$ in $(2 x+3 y)^{200}$ is

$$
\binom{200}{99} 2^{99} 3^{101}
$$

10. \star Proof by induction that $n^{5}-n$ is divisible by 5 for all $n \geq 1$.
(i) If $n=1$ then $n^{5}-n=0$ which is divisible by any integer, and in particular by 5 .
(ii) Assume the result true for $n=k$, so 5 divides $k^{5}-k$. Thus $k^{5}-k=5 \ell$ for some $\ell \in \mathbb{Z}$.

Consider the $n=k+1$ case. By the Binomial Theorem we have

$$
\begin{aligned}
(k+1)^{5}-(k+1) & =\left(k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1\right)-(k+1) \\
& =\left(k^{5}-k\right)+5\left(k^{4}+2 k^{3}+2 k^{2}+k\right) \\
& =5\left(\ell+k^{4}+2 k^{3}+2 k^{2}+k\right)
\end{aligned}
$$

because of the inductive hypothesis. Hence the right hand side is divisible by 5 as must, therefore, be the left hand side, i.e. the result holds for $n=k+1$.

Therefore by induction $n^{5}-n$ is divisible by 5 for all $n \geq 1$.

